Motor Oil "Wear Test" Results - Team Camaro Tech
Tips & Tricks Member submited how-to's

LinkBack Thread Tools Display Modes
post #1 of 2 (permalink) Old Jul 23rd, 12, 12:27 PM Thread Starter
Senior Tech
Join Date: Feb 2007
Location: Southern California
Posts: 153
Motor Oil "Wear Test" Results

I've "wear tested" about 50 different oils at this point in time. And in this testing, it has been clearly shown that zinc levels alone do not guarantee wear protection. The oil's base stock and its additive package "as a whole", is what determines an oil's wear prevention capability. So, you must use "wear test" data to really know which oils provide excellent protection, and which ones don't.


The test equipment I used focuses on an oil’s “load carrying capacity or film strength”, and for good reason. THE single most CRITICAL capability of any motor oil is its film strength. Everything else it does for your engine comes AFTER that. Here’s why. When oil is down to a very thin film, it is the last line of defense against metal to metal contact and subsequent wear or damage. And oil film strength capability DIRECTLY APPLIES to flat tappet lobe/lifter interfaces, cam gear/distributor gear interfaces, mechanical fuel pump pushrod tip/cam eccentric interfaces and other highly loaded engine component interfaces. The higher an oil’s film strength, the better your engine is protected in these areas.

Oil film strength capability also DIRECTLY APPLIES to cold start-up conditions. In this case, only an oil film remains on most internal engine components, because most of the oil drained off after shut down. And it’s no secret that nearly all wear occurs during start-up when there can be a couple of seconds or even more, depending on the viscosity being used and the ambient air temperature, before a flow of oil reaches all the components. Before oil flow reaches the components, all you have saving your engine from wear or damage, is the remaining oil’s film strength. That makes it another very important reason why an excellent film strength is highly desirable.

When Amsoil refers to wear scar size comparisons on their website, they are referencing oil film strength test data. A couple of years or so ago, when Castrol Edge and Valvoline SynPower ads talked about their oils providing better wear protection than Mobil 1, they were referencing oil film strength test data. Pennzoil Ultra currently advertises that no leading synthetic oil provides better wear protection, and they also reference oil film strength test data. The bottom line is that oil film strength testing and the resulting data, is the “Gold Standard” in the motor oil industry, regarding wear protection.

There is no additional value to performing more “comprehensive” oil testing related to wear prevention. Because when an oil is thicker than a mere film, it becomes LIQUID oil. And LIQUIDS are INCOMPRESSIBLE, which of course is how hydraulics work. But, that refers to 100% PURE LIQUID with no air bubbles what so ever. And the nature of liquids being “incompressible”, is a basic FACT of Physics. So, since liquid oil CANNOT be compressed, there can be NO metal to metal contact, THUS NO WEAR OR DAMAGE. This means that ALL oils when in “incompressible liquid form”, provide the SAME level of wear protection. And it does not matter if they cost one dollar per quart, or twenty dollars per quart. Nor does it matter how much zinc/phos is present.

For example, the normal flow of oil between the crank journals and rod or main bearings, is "liquid" oil. And the "liquid" oil in that hydrodynamic wedge is incompressible, just like any liquid is. For a crank journal to ever touch the bearings, the oil has to be reduced to only a film, and that film has to be PENETRATED. Because of course, to achieve metal to metal contact, and thus wear/damage, you have to go THROUGH the oil’s film strength to get there.

If conditions cause a flow of liquid oil to be squeezed out of the way, you are right back to being left with only an oil film, and the need for good film strength. And this is PRECISELY why we perform OIL FILM STRENGTH testing. The only thing that separates one oil from another oil, in terms of wear prevention, is the DIFFERENCE between their FILM STRENGTH capabilities. So, if an oil has sufficient film strength capability, then you are good to go when it comes to wear protection.

My testing performs severe torture testing on motor oil, which is much harder on the oil, than what the oil will ever experience inside any running engine. This is a dynamic friction test under load, and the test results are determined by the size of the wear scar. And how good an oil is at preventing wear, high zinc or low zinc, is determined in a fair and straight forward manner. The numbers come out how they come out, depending on the capability of the oil. And it’s not hard to understand the fact that an oil with a higher ranking in this testing, will also provide a higher level of wear protection in a running engine.

All of the oils are tested at a representative normal operating oil temperature of 230*F, to make the comparison meaningful. By testing in this manner, it absolutely shows which oils are better at preventing wear than others. This is NOT Rocket Science, but it is a real world test comparison. This type of testing allows you to test a multitude of oils EXACTLY THE SAME, under controlled and repeatable conditions, which you simply cannot do in a running engine. And you can see how they compare right away, without having to wait for 100,000 miles to find out what happened. With this testing methodology, you can quickly and easily distinguish between outstanding oils and merely ordinary oils.

I did this testing only for my own knowledge, because there is so much misinformation and misunderstanding about motor oil. But, I do NOT sell oil, and I do NOT get paid by any oil company. So, it doesn't matter to me what oil people buy, or why they buy, the oil they buy. That being the case, I have absolutely no reason to try to make one oil seem better than another. On the contrary, I'm only interested in seeing how they TRULY differ.

So, there is no Snake Oil pitch going on here. And I'm not trying to convince anyone of anything, I'm only sharing my test data results. People can embrace my data or ignore it. That of course is totally up to them. So, run whatever oil you like, but now you’ll have the data to see how oils rank, relative to each other.

Here are the results of my testing so far:

• The higher the psi result, the higher the “Load carrying capacity/Film strength”, and the better the oil is at preventing wear.

• All oils were tested at 230* F (representative of actual running temperature).

• Multiple tests were performed on each oil, and those results were averaged to arrive at each oil's final value shown below.

• Test Result differences between oils of less than 10%, are not significant, and oils within that range can be considered approximately equivalent.

• All oil bottles were thoroughly shaken before the samples were taken. This ensured that all the additive package components were distributed uniformly throughout all the oil in the bottle, and not settled to the bottom.

• All oils are full synthetic unless otherwise specified.

• All oils are suitable for street use unless otherwise specified.

Oil categories:

• Over 90,000 psi = OUTSTANDING protection

• 75,000 to 90,000 psi = GOOD protection

• 60,000 to 75,000 psi = MODEST protection

• Below 60,000 psi = UNDESIRABLE protection

********** OUTSTANDING PROTECTION ************

1. 5W30 Pennzoil Ultra, API SM = 115,612 psi
I have not been able to find this oil with the latest API SN certification. The bottle says, “No leading synthetic oil provides better wear protection”. For once, a product’s hype turns out to be true.
zinc = 806 ppm
phos = 812 ppm
moly = 66 ppm

2. 10W30 Lucas Racing Only = 106,505 psi
zinc = 2642 ppm
phos = 3489 ppm
moly = 1764 ppm
NOTE: This oil is suitable for short term racing use only, and is not suitable for street use.

3. 5W30 Mobil 1, API SN = 105,875 psi
zinc = 801 ppm
phos = 842 ppm
moly = 112 ppm

4. 0W30 Amsoil Signature Series 25,000 miles, API SN = 105,008 psi
zinc = 824 ppm
phos = 960 ppm
moly = 161 ppm

******* 10% below number 1 = 104,051 psi ********

5. 10W30 Valvoline NSL (Not Street Legal) Conventional Racing Oil = 103,846 psi
zinc = 1669 ppm
phos = 1518 ppm
moly = 784 ppm
NOTE: This oil is suitable for short term racing use only, and is not suitable for street use.

6. 5W50 Motorcraft, API SN = 103,517 psi
zinc = 606 ppm
phos = 742 ppm
moly = 28 ppm

7. 10W30 Valvoline VR1 Conventional Racing Oil (silver bottle) = 103,505 psi
zinc = 1472 ppm
phos = 1544 ppm
moly = 3 ppm

8. 10W30 Valvoline VR1 Synthetic Racing Oil, API SL (black bottle) = 101,139 psi
zinc = 1180 ppm
phos = 1112 ppm
moly = 162 ppm

9. 5W30 Chevron Supreme conventional, API SN = 100,011 psi
This one only costs $4.29 per quart at the Auto Parts Store where I bought it.
zinc = 1018 ppm
phos = 728 ppm
moly = 161 ppm

10. 5W20 Castrol Edge with Titanium, API SN = 99,983 psi
zinc = 1042 ppm
phos = 857 ppm
moly = 100 ppm
titanium = 49 ppm

11. 20W50 Castrol GTX conventional, API SN = 96,514 psi
zinc = 610 ppm
phos = 754 ppm
moly = 94 ppm

12. 30 wt Red Line Race Oil = 96,470 psi
zinc = 2207 ppm
phos = 2052 ppm
moly = 1235 ppm
NOTE: This oil is suitable for short term racing use only, and is not suitable for street use.

13. 0W20 Mobil 1 Advanced Fuel Economy, API SN = 96,364 psi
zinc = 742 ppm
phos = 677 ppm
moly = 81 ppm

14. 5W30 Quaker State Ultimate Durability, API SN = 95,920 psi
zinc = 877 ppm
phos = 921 ppm
moly = 72 ppm

15. 5W30 Castrol Edge with Titanium, API SN = 95,717 psi
zinc = 818 ppm
phos = 883 ppm
moly = 90 ppm
titanium = 44 ppm

16. 10W30 Joe Gibbs XP3 NASCAR Racing Oil = 95,543 psi
zinc = 743 ppm
phos = 802 ppm
moly = 1125 ppm
NOTE: This oil is suitable for short term racing use only, and is not suitable for street use.

17. 5W20 Castrol GTX conventional, API SN = 95,543 psi
zinc = TBD
phos = TBD
moly = TBD
NOTE: Oil numbers 16 and 17 were tested weeks apart, but due to the similarities in their wear scar sizes, their averages ended up the same.

18. 5W30 Castrol GTX conventional, API SN = 95,392 psi
zinc = 830 ppm
phos = 791 ppm
moly = 1 ppm

19. 10W30 Amsoil Z-Rod Oil = 95,360 psi
zinc = 1431 ppm
phos = 1441 ppm
moly = 52 ppm

20. 5W30 Valvoline SynPower, API SN = 94,942 psi
zinc = 969 ppm
phos = 761 ppm
moly = 0 ppm

21. 5W30 Valvoline Premium Conventional, API SN = 94,744 psi
zinc = TBD
phos = TBD
moly = TBD

22. 5W20 Mobil 1, API SN = 94,663 psi
zinc = 764 ppm
phos = 698 ppm
moly = 76 ppm

23. 5W20 Valvoline SynPower, API SN = 94,460 psi
zinc = 1045 ppm
phos = 742 ppm
moly = 0 ppm

******** 20% below number 1 = 92,490 psi ********

24. 5W30 Lucas conventional, API SN = 92,073 psi
zinc = 992 ppm
phos = 760 ppm
moly = 0 ppm

25. 5W30 O'Reilly (house brand) conventional, API SN = 91,433 psi
This one only costs $3.99 per quart at the Auto Parts Store where I bought it.
zinc = 863 ppm
phos = 816 ppm
moly = 0 ppm

26. 5W30 Red Line, API SN = 91,028 psi
zinc = TBD
phos = TBD
moly = TBD

27. 5W20 Royal Purple API SN = 90,434 psi
zinc = 964 ppm
phos = 892 ppm
moly = 0 ppm

28. 10W30 Quaker State Defy, API SL (semi-synthetic) = 90,226 psi
zinc = 1221 ppm
phos = 955 ppm
moly = 99 ppm

29. 5W20 Valvoline Premium Conventional, API SN = 90,144 psi
zinc = TBD
phos = TBD
moly = TBD

************ GOOD PROTECTION **********

30. 30 wt Castrol Heavy Duty conventional, API SM = 88,089 psi
zinc = 907 ppm
phos = 829 ppm
moly = 56 ppm

31. 10W30 Joe Gibbs HR4 Hotrod Oil = 86,270 psi
zinc = 1247 ppm
phos = 1137 ppm
moly = 24 ppm

32. 5W20 Pennzoil Ultra, API SM = 86,034 psi
I have not been able to find this oil with the latest API SN certification.
zinc = TBD
phos = TBD
moly = TBD

33. 5W30 Royal Purple API SN = 84,009 psi
zinc = 942 ppm
phos = 817 ppm
moly = 0 ppm

34. 20W50 Royal Purple API SN = 83,487 psi
zinc = 588 ppm
phos = 697 ppm
moly = 0 ppm

35. 20W50 Kendall GT-1 High Performance with liquid titanium, (conventional) API SN = 83,365 psi
zinc = 991 ppm
phos = 1253 ppm
moly = 57 ppm
titanium = 84 ppm

36. 5W30 Mobil 1 Extended Performance 15,000 mile, API SN = 83,263 psi
zinc = 890 ppm
phos = 819 ppm
moly = 104 ppm

37. 0W20 Castrol Edge with Titanium, API SN = 82,867 psi
zinc = TBD
phos = TBD
moly = TBD

******** 30% below number 1 = 80,928 psi ********

38. 5W30 GM's AC Delco dexos 1 (semi-synthetic) API SN = 76,501 psi
zinc = 878 ppm
phos = 758 ppm
moly = 72 ppm

**************** MODEST PROTECTION ************

39. 5W30 Royal Purple XPR (Extreme Performance Racing) = 74,860 psi
zinc = 1421 ppm
phos = 1338 ppm
moly = 204 ppm
NOTE: This particular bottle of oil was just opened, but was out of a 3 ½ year old case.

40. 15W40 Farm Rated Heavy Duty Performance Diesel, CI-4, CH-4, CG-4, CF/SL, SJ (conventional) = 73,176 psi
zinc = 1325ppm
phos = 1234 ppm
moly = 2 ppm

41. Brad Penn, Penn Grade 1 Nitro 70 Racing Oil (semi-synthetic) = 72,003 psi
zinc = TBD
phos = TBD
moly = TBD

42. 0W30 Brad Penn, Penn Grade 1 (semi-synthetic) = 71,377 psi
zinc = 1621 ppm
phos = 1437 ppm
moly = 0 ppm

43. 10W30 Brad Penn, Penn Grade 1 (semi-synthetic) = 71,206 psi
zinc = 1557 ppm
phos = 1651 ppm
moly = 3 ppm

44. 15W50 Mobil 1, API SN = 70,235 psi
zinc = 1,133 ppm
phos = 1,168 ppm
moly = 83 ppm

******** 40% below number 1 = 69,367 psi ********

45. 5W30 Motorcraft, API SN = 68,782 psi
zinc = 796 ppm
phos = 830 ppm
moly = 75 ppm

46. 10W30 Royal Purple HPS (High Performance Street) = 66,211 psi
zinc = 1774 ppm
phos = 1347 ppm
moly = 189 ppm

47. 10W40 Valvoline 4 Stroke Motorcycle Oil conventional, API SJ = 65,553 psi
zinc = 1154 ppm
phos = 1075 ppm
moly = 0 ppm

48. Royal Purple 10W30 Break-In Oil conventional = 62,931 psi
zinc = 1170 ppm
phos = 1039 ppm
moly = 0 ppm

******** 50% below number 1 = 57,806 psi ********
540 RAT is offline  
Sponsored Links
post #2 of 2 (permalink) Old Jul 24th, 12, 09:02 AM
Gold Lifetime Member
bcm66's Avatar
Join Date: Apr 2006
Location: Nebraska
Posts: 4,659
Re: Motor Oil "Wear Test" Results

Were these tests done directly by you, or is this information a repost?

What are your credentials if you did the testing? Not trying to cause trouble, I just want to know more about what this is based on.

Also some of these show "not suitable for street use". It would be nice if you ranked them by "street use" and "racing use only".

Also to me it is hard to believe that in the rankings...

#1 5W30 Pennzoil Ultra (costs about $28 at Walmart for 5 qts)
zinc = 806 ppm
phos = 812 ppm
moly = 66 ppm

zinc = 2642 ppm
phos = 3489 ppm
moly = 1764 ppm

Is this really true?

68 Camaro SS 396 - 468 BBC now, M21, 12 bolt 3.73 coded housing but w/ 3.31 gears.
Looking for 68 Camaro with body number NOR 181016
To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts.
bcm66 is offline  
Sponsored Links

Quick Reply

Register Now

In order to be able to post messages on the Team Camaro Tech forums, you must first register.
Please enter your desired user name, your email address and other required details in the form below.

User Name:
Please enter a password for your user account. Note that passwords are case-sensitive.


Confirm Password:
Email Address
Please enter a valid email address.
NOTE we receive a lot of registrations with bad email addresses. IF you do not receive your confirmation email you will not be able to post. contact support and we will try and help.
Be sure you enter a valid email address and check your spam folder as well.

Email Address:


Thread Tools
Show Printable Version Show Printable Version
Email this Page Email this Page
Display Modes
Linear Mode Linear Mode

Posting Rules  
You may post new threads
You may post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On

For the best viewing experience please update your browser to Google Chrome